skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Costin, Ovidiu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Springer (Ed.)
    Conway’s real closed field No of surreal numbers is a sweeping generalization of the real numbers and the ordinals to which a number of elementary functions such as log and exponentiation have been shown to extend. The problems of identifying significant classes of functions that can be so extended and of defining integration for them have proven to be formidable. In this paper we address this and related unresolved issues by showing that extensions to No, and thereby integrals, exist for most functions arising in practical applications. In particular, we show they exist for a large subclass of the resurgent functions, a subclass that contains the functions that at ∞ are semi-algebraic, semi-analytic, analytic, meromorphic, and Borel summable as well as solutions to nonresonant linear and nonlinear meromorphic systems of ODEs or of difference equations. By suitable changes of variables we deal with arbitrarily located singular points. We further establish a sufficient condition for the theory to carry over to ordered exponential subfields of No more generally and illustrate the result with structures familiar from the surreal literature. The extensions of functions and integrals that concern us are constructive in nature, which permits us to work in NBG less the Axiom of Choice (for both sets and proper classes). Following the completion of the positive portion of the paper, it is shown that the existence of such constructive extensions and integrals of substantially more general types of functions (e.g. 
    more » « less
  2. Springer (Ed.)
    We call a pair of vertex-disjoint, induced subtrees of a rooted tree twins if they have the same counts of vertices by out-degrees. The likely maximum size of twins in a uniformly random, rooted Cayley tree of size n → ∞ is studied. It is shown that the expected number of twins of √ size (2 + δ) log n · log log n approaches zero, while the expected number √ of twins of size (2 − δ) log n · log log n approaches infinity. 
    more » « less
  3. Springer (Ed.)
    We analyze non-perturbatively the one-dimensional Schrödinger equation describing the emission of electrons from a model metal surface by a classical oscillating electric field. Placing the metal in the half-space x 0, the Schrödinger equation of the system is i∂t ψ = − 2 1 ∂x 2 ψ + (x)(U − E x cos ωt)ψ, t > 0, x ∈ R, where (x) is the Heaviside function and U > 0 is the effective confining potential (we choose units so that m = e = = 1). The amplitude E of the external electric field and the frequency ω are arbitrary. We prove existence and uniqueness of classical solutions of the Schrödinger equation for general initial conditions ψ(x, 0) = f (x), x ∈ R. When 2the initial condition is in L the evolution is unitary and the wave function goes to zero at any fixed x as t → ∞. To show this we prove a RAGE type theorem and show that the discrete spectrum of the quasienergy operator is empty. To obtain positive electron current we consider non-L 2 initial conditions containing an incoming beam from the left. The beam is partially reflected and partially transmitted for all t > 0. For these initial conditions we show that the solution approaches in the large t limit a periodic state that satisfies an infinite set of equations formally derived, under the assumption that the solution is periodic by Faisal et al. (Phys Rev A 72:023412, 2005). Due to a number of pathological features of the Hamiltonian (among which unboundedness in the physical as well as the spatial Fourier domain) the existing methods to prove such results do not apply, and we introduce new, more general ones. The actual solution exhibits a very complex behavior, as seen both analytically and numerically. It shows a steep increase in the current as the frequency passes a threshold value ω = ωc , with ωc depending on the strength of the electric field. For small E, ωc represents the threshold in the classical photoelectric effect, as described by Einstein’s theory. 
    more » « less